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1 About

This document provides a conceptual framework for quantum information
processing with nuclear spins in biological contexts, as proposed by Mat-
tew Fisher [1]. Combined with ongoing experimental e�orts, this framework
presents a foundation for potential applications in therapeutics, synthetic
biology, and quantum computing.

An introductory-level familiarity with the formalism and concepts of quan-
tum mechanics is assumed in some sections (see [[2]] for a modern introduc-
tion). For convenience, a brief summary of the ideas in quantum information
processing is included in Appendix A.
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2 Overview: Nuclear Spins in Biology

Conventional wisdom says that biological contexts are not conducive to quan-
tum information processing. Brie�y, the argument is that biological systems,
which operate near thermal equilibrium, only support quantum states with
extremely short lifetimes (think 10−13 - 10−20 seconds) [3]. If true, then
there may simply be insu�cient time for biologically-relevant quantum in-
formation processing to occur.

A careful consideration of nuclear spin states (reviewed in Appendix B) may
provide an exception to this argument. The spin states of certain atomic
nuclei are naturally well-isolated from their environment, providing non-
equilibrium quantum states with lifetimes measured in seconds [4], a fact
is regularly exploited by the (related) �elds of nuclear magnetic resonance
(NMR) spectroscopy, MRI, and NMR-based quantum computing.

For biology to leverage nuclear spins for quantum information processing, at
least the following must be true (more speci�c requirements can be found in
[1] and [5]):

1. A molecule with long-lived nuclear spin states is naturally present in
biological contexts.

2. The nuclear spins must support non-trivial quantum states via some
entangling mechanism.

3. The nuclear spins must actively inform the dynamics of the containing
biological system, and vice versa.

The remainder of this document summarizes a theoretical model that pre-
dicts all of these requirements could be met. Requirement 1 is supported by
a speci�c calcium phosphate molecule (see Long-lived Nuclear Spin States
in Posner Molecules). Requirements 2 and 3 are met with a novel "quantum
dynamical selection" (QDS) conjecture [6] that relates nuclear spin states to
chemical reactions (see Entanglement Between Posner Molecules). Together,
these form the sca�olding of testable hypotheses regarding biological quan-
tum information processing with nuclear spins.
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3 Long-lived Nuclear Spin States in Posner Molecules

The six phosphorous nuclear spins in Ca9(PO4)6, also called a "Posner
molecule", are hypothesized to be strongly isolated from the surrounding
liquid environment. This section summarizes the theoretical basis for this
hypothesis. Further details can be found in [1] and [7]

A biological Posner molecule is suspended in a warm aqueous solution. Why
don't the myriad of interactions between the Posner molecule and the sur-
rounding solution scramble (decohere) the nuclear spins? The following
subsections answer this question by considering both rotational dynamics
and magnetic interactions. Note, these same arguments underpin well-
established NMR-based technologies, and are reproduced here for Posner
molecules for completeness.

3.1 Protection from Rotational Dynamics

A Posner molecule performs roughly one trillion rotations per second in bio-
logical contexts. At this rate, the nuclear spins constitute only a tiny fraction
of the overall angular momentum of a Posner molecule. The solution, when
approximated as a classical �uid, is continuously "measuring" this angular
momentum via its interactions with the Posner molecules. However, the pre-
cision on these measurements is insu�cient to distinguish between di�erent
nuclear spin states. This indistinguishability implies that the nuclear spins
should not entangle with the solution via these rotational dynamics. [1]

3.2 Protection from Magnetic Interactions

Each spin 1
2 phosphorous nucleus has as magnetic dipole moment 1. This

implies it interacts with any magnetic �elds present near the nucleus, which
could originate from other nuclei / electrons within the molecule, or from
magnetic dipoles (e.g. protons) in the surrounding �uid.

3.2.1 Coupling Between Phosphorous Nuclei

Interactions between the nuclear spins within a single Posner molecule are
predicted to occur. However, these do not themselves provide a decoher-

1: Crucially, spin 1
2
nuclei do not couple to electric �elds, which would otherwise rapidly

decohere the state. Phosphorous and hydrogen contain the only two naturally-occurring
spin 1

2
nuclei in biology, but phosphorous is generally more protected.
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ence pathway, which requires interactions with the external environment.
Therefore, these interactions will be ignored for the present purposes.

3.2.2 Coupling Between Phosphorous Nuclei and Nearby Elec-

trons

The electrons in a Posner molecule each have strong magnetic dipole mo-
ments, relative to the nuclear magnetic moment. These electron magnetic
dipoles can couple both to a phosphorous nucleus and an external magnetic
dipole, which provides a decoherence pathway. This is mitigated in the case
of a Posner molecule, since each electron is generally in a pair with anti-
aligned spins, which have no overall magnetic dipole moment.

3.2.3 Coupling Between Phosphorous Nuclei and External Mag-

netic Dipoles

Classical external magnetic �elds can a�ect nuclear spin states by causing
them to precess. In biological settings, such magnetic �elds could originate
from a nearby magnetic dipole in the solution (e.g. a hydrogen ion), or, for
example, the strong static magnet of an MRI device.

Posner molecules in warm solutions are rapidly rotating relative to external
magnetic dipole sources. Due to this motion, phosphorous nuclei in a Posner
molecule experience an average �eld close to zero [1], which minimizes the
�eld's e�ect on the spins. Interestingly, the protection due to this "motional
narrowing" e�ect is predicted to positively correlate with the tumbling rate
and, therefore, temperature.

Additionally, the nuclear spin states of interest (de�ned later as the "pseu-
dospin sectors") have small or zero overall magnetic dipole moments. This
fact also reduces their susceptibility to external magnetic �elds.

3.3 Coherence Time Estimates

Given these considerations, the phosphorous nuclear spins in a Posner molecule
are expected to be strongly isolated from the surrounding environment. The-
oretical approximations assume that coupling between phosphorous nuclei
and external magnetic dipoles (e.g. protons) is the dominant decoherence
pathway. In section III.E.3 of [7], the timescale for depolarizing noise (T1)
was estimated to be 3 weeks due to the coupling between phosphorous spins
and an external proton. The dynamics of the molecule in a liquid imply that
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dephasing noise acts on a similar timescale (i.e. T1 ≈ T2).

Overall, these estimates suggest that quantum spin states within Posner
molecules can be maintained for biologically-relevant timescales. Experi-
ments (e.g. via NMR spectroscopy) to validate this prediction are underway.

4 Entanglement Between Posner Molecules

4.1 About

The nuclear spins of distinct Posner molecules are hypothesized to become
entangled via chemical binding dynamics. This is a direct prediction of the
QDS conjecture [6], which is relevant to Posner molecules due to their hy-
pothesized three-fold rotational symmetry and long-lived nuclear spin states.

The following sections describe the theoretical model behind QDS, and apply
it to the case of pairwise binding of Posner molecules.

4.2 Rotational Symmetry of Posner Molecules

A one likely con�guration of the atoms in a Posner molecule exhibits 3-fold
rotational symmetry [7] Following [6], the electrons in a Posner molecule are
assumed to transform trivially under a 1

3 rotation. Therefore, only the nu-
clear component is considered for the remainder of this document.

Let Ĉ3 represent the quantum operator which performs a 1
3 rotation of the

nuclei in a Posner molecule around the symmetry axis. Perfect 3-fold sym-
metry implies

Ĉ3ψ = ψ. (1)

That is, the wavefunction remains unchanged 2 after the rotation. Without
loss of generality, ψ can be expanded to expose the spin and orbital degrees
of freedom of the nucleus 3:

2If this rotation constituted an even cyclic permutation of identical Fermions (here,
the phosphorous nuclei), then Ĉeven |Ψ⟩ = − |Ψ⟩. However, for Posner molecules the
permutation is odd, which implies no overall phase.

3: The meaning of indices τ and l is covered in the two subsequent sections.
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ψ =
∑
τ,l

ψ
(τ)
spinψ

(l)
orbital. (2)

Ĉ3 can be analyzed on the spin and orbital wavefunctions separately, via the
following decomposition:

Ĉ3 = Ĉspin
3 ⊗ Ĉorbital

3 (3)

The following subsections analyze the rotational symmetry constraint em-
bodied by equation 1 to �nd that the spin and orbital degrees of freedom

must be entangled.

4.3 Cyclic Permutations of Phosphorous Spins

In a 3-fold symmetric Posner molecule, Ĉspin
3 is a cyclic permutation of the

phosphorous nuclear spin states 4. The symmetry constraint drives focus
on the eigenstates of Ĉspin

3 , which are invariant under cyclic permutation.

Given that (Ĉspin
3 )3 = Î, we can deduce that the possible eigenvalues are the

cube-roots of unity. Thus,

Ĉspin
3 ψ

(τ)
spin = ωτψ

(τ)
spin, (4)

where ω = e
2πi
3 , τ ∈ {0,±1}, and ψ(τ)

spin
5 denotes any vector in the eigenspace

associated with eigenvalue ωτ .

τ is called the "pseudospin", and it labels how states in the three "pseudospin
sectors" (eigenspaces) accumulate phase under the permutation Ĉspin

3 . The
nuclear spin states in these sectors are enumerated in Tables I-IV of [5] and
visualized in Figure 6 of [7]

The 26 = 64 orthogonal eigenvectors of Ĉspin
3 span the entire Hilbert space

of the 6 phosphorous nuclear spins in a Posner molecule. Ignoring normal-
ization, any arbitrary spin state for these nuclei can therefore be written as
a linear combination 6 of vectors from each eigenspace:

4The other nuclei in a Posner (oxygen and calcium) have nuclear spins of 0, so we
ignore their states in this section.

5: The superscript (τ) in ψ
(τ)
spin denotes an index, not an exponent.

6: The uniqueness of this decomposition is not claimed here, nor is it leveraged in the
logic that follows.
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ψspin =
∑
τ

ψ
(τ)
spin

4.4 Orbital Rotations of Phosphorous Spins

Ĉorbital
3 represents a 1

3 rotation of the positions of all nuclei in a Posner

molecule around the symmetry axis. De�ne the operator L̂ as a measurement
of the angular momentum along the axis of symmetry. A rotation of angle

ϕ is then represented by the unitary operator R̂(ϕ) = e−iϕL̂ (ℏ = 1). So,

Ĉorbital
3 = R̂(

2π

3
) = e−i 2π

3
L̂ = ω−L̂

where, again, ω = e
2πi
3 is the cube-root of unity.

Now consider rotating the eigenstates of L̂, denoted ψ
(l)
orbital:

Ĉorbital
3 ψ

(l)
orbital = ω−L̂ψ

(l)
orbital = ω−lψ

(l)
orbital. (5)

Thus, by de�nition, Ĉorbital
3 imparts a phase of ω−l to the angular momen-

tum eigenstate with eigenvalue l.

4.5 Entanglement Between Pseudospin and Orbital Momen-

tum

Combining equations 1, 2, 3, 4, 5, we �nd a relation between the phases
found in the previous two sections:

Ĉ3ψ = Ĉ3

∑
τ,l

ψ
(τ)
spinψ

(l)
orbital

=
∑
τ,l

Ĉspin
3 ψ

(τ)
spinĈ

orbital
3 ψ

(l)
orbital

=
∑
τ,l

ωτψ
(τ)
spinω

−lψ
(l)
orbital

=
∑
τ,l

ψ
(τ)
spinψ

(l)
orbital

= ψ
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Thus, the rotational symmetry constrains the phase accumulated by each
term, namely ωτω−l = 1. This relates the values of τ and l:

ωτω−l = ωτ−l = ei
2π
3
(τ−l) = 1

τ − l = 3Z
l = τ − 3Z

where Z is the set of integers. The spin and orbital components of the nuclear
wavefunction are therefore entangled 7:

ψ =
∑
τ

∑
l∈τ−3Z

ψ
(τ)
spinψ

(l)
orbital (6)

For example, if |l| ≈ 1000, the pseudospin sectors could have the following
angular momenta l 8:

τ = +1 τ = 0 τ = −1

. . . . . . . . .
999 1000 1001
1002 1003 1004
1005 1006 1007
. . . . . . . . .

4.6 Pseudospin Entanglement and Pairwise Posner Binding

In certain situations, the entanglement between pseudospin and orbital mo-
mentum becomes relevant to chemical dynamics [6]. One such case is when
two Posner molecules (say A and B) attempt to chemically bind. During
a pairwise binding, the two Posner symmetry axes are hypothesized to be
anti-aligned (a claim supported by electronic structure simulations) [7] This
implies that the relative angular momenta of the two chemically bound Pos-
ner molecules is constrained 9 by:

lA = −lB
7: The entanglement in this expression is manifest by the values for l depending on the

value of τ , which prevents any decomposition of the form ψ = ψspin ⊗ ψorbital.
8: The corresponding negative values are equally likely, but not shown here.
9: Another way to imagine this constraint is that bound molecules are not slipping

against each other.
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Given the contents of the previous subsection, this constraint imposes a
related constraint on the pseudospins:

τA = −τB (7)

If the nuclear spin wavefunction for each molecule is represented as a super-
position of states in each pseudospin sector, like

|Ψ⟩ =
∑
τ

ατ |τ⟩ ,

then the joint state of the bound 10 molecules is entangled :

|ΨAB⟩bound = α0,0 |0⟩A |0⟩B + α−1,+1 |−1⟩A |+1⟩B + α+1,−1 |+1⟩A |−1⟩B

This state may persist after the Posner molecules unbind, providing a po-
tential mechanism for distributing entanglement throughout a biological sys-
tem. This pseudospin entanglement structure could furthermore modulate
the probabilities of pairwise binding events within a set of Posner molecules,
via a reciprocal argument to the one above. Since bound Posner molecules
are predicted to be more vulnerable to hydrolyzation, which releases their
calcium ions to the local environment, there is a hypothetical link between
the pseudospin entanglement structure and calcium signaling. [1]

5 Hypothetical Mechanism for Lithium Isotope Ef-

fects

Simulations show it is energetically favorable for two Li+ ions to take the
place of the Ca2+ ion in the center of a Posner molecule [7] If this happens,
the non-zero spins of the two Li nuclei will couple to the phosphorous spins,
unlike the zero-spin Ca nucleus they replaced. Critically, this new dynamic
would be sensitive to whether 7Li (common) or 6Li (rare) is involved, since
these two stable isotopes have di�erent nuclear spins. The di�erence is man-
ifest in the decoherence times in water, which are 10 seconds for 7Li and 5
minutes for 6Li [8]. In this case, a single neutron makes a large di�erence!

10: Here it is assumed that whether or not the two molecules bind constitutes a projective
measurement of the quantum state of the pseudospins. Accordingly, the failure of two
nearby Posner molecules to bind projects the pseudospins into a di�erent entangled state.
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The exact e�ect of the Li isotopes on Posner spin states is ongoing research.
One reasonable hypothesis is that the coherence time 11 of the spins in a Pos-
ner is di�erentially a�ected by the isotope of Li present. This could partially
account for the di�erential Lithium isotope e�ects observed in biological sys-
tems [1].

6 Prospects for Information Processing with Pos-

ner Molecules

The following is an inexhaustive list of open questions regarding the infor-
mation processing capacity of Posner molecules:

1. What kinds of entangled states are supported by the pseudospins in a
large 12 network of Posner molecules?

2. Are the allowed transformations of pseudospin states su�cient for uni-
versal quantum computation?

3. Can a natural or synthetic system implement quantum computation
with Posner molecules?

The following subsections brie�y summarize ongoing research in these direc-
tions, including some unpublished / preliminary results.

6.1 Cli�ord-based Quantum Circuit Simulations

The pseudospin entanglement dynamics of a large set of symmetric Posner
molecules can be approximately simulated via a quantum circuit model. In
the ongoing work, three primary approximations are made:

1. The pseudospin is only a two state system (i.e. a qubit), not usual
three-state system as de�ned above.

2. The Posner molecules only bind and unbind along a 1-dimensional
chain.

11: The coherence time of a system refers to the average time between events that
scramble its quantum state. These events are usually from uncontrolled interactions with
the external environment.

12: For present purposes, a network of 1000 or more Posner molecules is considered
"large".
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3. All unitary operations are Cli�ord operations 13.

Together, these approximations enable the simulation of a large 12 number
of Posner molecules on classical computers. The preliminary results of these
simulations include the following:

1. Given enough time, all pseudospins will align in a pure quantum state,
independent of the initial state or its purity.

2. The time to achieve this steady-state scales quadratically with system
size. This allows for the possibility that the steady-state is achieved
within the Posner nuclei's coherence time.

3. On shorter timescales, non-trivial entangled states emerge. Further
characterizing these states is ongoing research.

6.2 Universal Quantum Computing

A universal quantum computer is a system that supports enough control of
a quantum state to compute any unitary transformation and therefore, any
quantum algorithm. In [5], the universality of Posner-based quantum compu-
tation is analyzed in the context of measurement-based quantum computing.
Given su�cient assumptions about state-preparation, control of Posner bind-
ing, and the ability to perform local measurements, the authors were able to
construct a cluster state that fueled universal measurement-based quantum
computing with Posner molecules.

Showing the universality of Posner-based quantum computation with fewer
or di�erent assumptions is ongoing research.

6.3 Reservoir Computing

Reservoir computing is a machine learning framework used for the e�cient
classi�cation of multivariate time-series data. It consists of a non-linear dy-
namic system, the "reservoir", which is coupled to an input stream and an
output classi�er. By training only the output classi�er, the overall system
can reach meaningful levels of classi�cation performance [9].

13: The Cli�ord operations constitute a restricted gate set that admits e�cient time-
evolution on classical computers. There is no physical motivation for this approximation
- it is solely required for the feasibility of simulation.
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Quantum systems are particularly appealing reservoirs due to their expo-
nentially large state space and the non-linearity induced by projective mea-
surements. There have been several attempts to leverage quantum systems
in reservoir computing frameworks [10], [11], [12], [13], [14]. Notably for
present purposes, one group demonstrated simple functions can be learned
on a small NMR-based quantum reservoir computer [13].

Whether a collection of Posner molecules can be leveraged as a quantum
reservoir for machine learning is an open question. Crucially, a computa-
tional framework like this might avoid the requirement of precisely control-
ling the binding of Posner molecules, since the reservoir is assumed to be
stochastic and largely uncontrolled.
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9 Appendix A: A Review of Quantum Information

9.1 The Qubit

The fundamental unit of quantum information is the "qubit", which can
be physically embodied by any two-state degree of freedom that is strongly
isolated from its environment. A measurement operation that distinguishes
the two states is called a "readout". In the measurement basis, a qubit has
the generic state:

|Ψ1⟩ = α0 |0⟩+ α1 |1⟩

where αi ∈ C are the complex "probability amplitudes" and the sum indi-
cates a "quantum superposition". The states |0⟩ and |1⟩ are called "compu-
tational basis states" and correspond to the states of a classical bit.

9.2 Multiple Qubits

Qubits compose into larger systems like any other quantum states. A system
of N qubits has the generic state:

13



|ΨN ⟩ =
2N−1∑
i=0

αi |i⟩

This is an assignment of a probability amplitude to each of the 2N com-
putational basis states |i⟩ ∈ {|00...0⟩ , |00...1⟩ , ... |11...1⟩}. Here, the binary
representation of the multi-qubit basis state is a shorthand for the tensor
product of individual qubit states. The notation makes the following three
representations equivalent: |0⟩A ⊗ |1⟩B = |0⟩A |1⟩B = |01⟩AB . The sub-
scripts labeling the subsystems are often dropped when the context makes
them obvious or unnecessary.

9.3 Entanglement

Entangled states are de�ned as states which do not admit a full factorization
into the states of their constituent qubits. Consider two qubits A and B, each
initially in an equal superposition state. Before interacting, their combined
state is (ignoring amplitude normalization):

|Ψinitial⟩ = |00⟩AB + |01⟩AB + |10⟩AB + |11⟩AB = (|0⟩+ |1⟩)A (|0⟩+ |1⟩)B
This state is easily factored into separate states for A and B. After an
entangling interaction, the state could become:

|Ψentangled⟩ = |00⟩AB + |11⟩AB

which cannot be factored into a product of states for A and B.

In this sense, entangled states correspond to situations where the whole is

richer than the sum of its parts.

9.4 Measurement

Just like any other quantum state, a "quantum measurement" of |ΨN ⟩ re-
sults in outcome |i⟩ with probability |αi|2. The state after a measurement is
irreversibly collapsed to |ΨN ⟩ = |i⟩, i.e. all amplitudes are 0 except αi, which
has magnitude 1. This is called the "Born Rule", and is usually presented
as an axiom of quantum theory.

Note, the Born Rule implies the global scaling and phase of the amplitudes
is physically meaningless. This reduces the real degrees of freedom embodied
in a state of N qubits to 2 ∗ 2N − 2 = 2N+1 − 2, which is still O(2N ).
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9.5 Quantum Computation

A quantum computation is a set of operations that transform a state of N
qubits to for the purpose of information processing. These operations are
constrained by the laws of quantum physics, so not all transformations of
the O(2N ) amplitudes are allowed. Speci�cally, any non-measurement oper-
ation must transform the state reversibly. These reversible transformations
are called "unitary transformations". Any quantum computation can be
described by some sequence of unitary transformations and measurement
operations.

9.6 Quantum Speedup

A quantum speedup is an algorithmic advantage enabled by a quantum com-
putation (when compared to a classical computation). Though there is no
scienti�c consensus on the exact theoretical reason for quantum speedups,
several algorithms with practical speedups have been discovered and demon-
strated on real quantum computers. As the performance of quantum hard-
ware improves, we expect these algorithmic speedups to enable "quantum
advantage", de�ned as a real-world problem being solved faster / cheaper /
better by leveraging quantum (rather than purely classical) resources.

10 Appendix B: A Review of Quantum Spin

10.1 Spin is Intrinsic Angular Momentum

Like mass and charge, all fundamental particles have an intrinsic value called
"spin". Spin measures the intrinsic angular momentum of a particle, which
a�ects both its rotational dynamics and its magnetic interactions. Quantum
theory predicts that spin values take a �nite discrete spectrum, which is no-
tably di�erent from the continuous model of classical angular momentum.
Additionally, quantum theory predicts that, at any given time, only one axis
of a particle's spin state can be measured. The foundations of spin quanti-
zation are understood via representation theory, which is beyond the scope
of this summary. See [15] for a thorough introduction.

10.2 Spin 1
2
Particles as Qubits

Consider a "spin 1
2" particle (e.g. an electron) with spin ±ℏ

2 along some
measurement axis. In this basis, a generic quantum state for the spin is

15



given by

|Ψspin⟩ = α |−ℏ
2
⟩+ β |+ℏ

2
⟩ .

This is a state in a two-dimensional complex Hilbert space, also known as a
qubit. We can simplify the notation by moving to natural units (ℏ = 1) and
re-labeling the states to |0⟩ and |1⟩:

|Ψspin⟩ = α |0⟩+ β |1⟩ .
Qubits are reviewed in Appendix A.

10.3 Nuclear Spins

The spin of an atomic nucleus is given by the sum of the spins of its con-
stituent protons and neutrons, which are both spin 1

2 particles. When the
spins of the protons and neutrons in a nucleus balance, the total nuclear
spin is 0. When the spins aren't balanced, nuclei can have a net spin with
magnitude ∈ {1

2 , 1,
3
2 , 2,

5
2 , ...}.

11 Appendix C: Pseudospin Sectors

This appendix augments the subsection Cyclic Permutations of Phosphorous
Spins. Please read that �rst.

The hypothesized three-fold rotational symmetry of a Posner molecule allows
a decomposition of phosphorous nuclei into two triangles, each transform-
ing independently during rotations along the symmetry axis. Therefore, the
pseudospin sectors can be understood by considering permutations within
triangle separately.

This section provides examples of triangle states invariant under Ĉspin
3 . Pair-

wise products of these states generate the vectors in the pseudospin sectors
of the entire Posner molecule. See Tables I - IV of [5] for a complete enu-
meration.

As a reminder, the Ĉspin
3 operation is a cyclic permutation that relabels the

spin states. Explicitly, Ĉspin
3 |abc⟩ = |bca⟩, where a, b, c ∈ {0, 1} denote the

spin states of the three nuclei within either triangle of phosphorous atoms in
the Posner molecule.

16



11.1 Triangle States with Zero Accumulated Phase

Some examples of (unnormalized) triangle spin states that accumulate 0
phase under Ĉspin

3 include |000⟩, |111⟩, and

|W ⟩ = |001⟩+ |010⟩+ |100⟩

since cyclic permutations of any of these is an identity operation (i.e. the
accumulated phase is 1).

11.2 Triangle States with Accumulated Phase of ω

An example of an (unnormalized) triangle spin state that provides a global
phase of ω under Ĉspin

3 is

|ω⟩ = |001⟩+ ω2 |010⟩+ ω |100⟩

.
Applying Ĉspin

3 :

Ĉspin
3 |ω⟩ =

Ĉspin
3

(
|001⟩+ ω2 |010⟩+ ω |100⟩

)
=

|010⟩+ ω2 |100⟩+ ω |001⟩ =
ω |001⟩+ |010⟩+ ω2 |100⟩ =

ω
(
|001⟩+ ω2 |010⟩+ ω |100⟩

)
=

ω |ω⟩

11.3 Triangle States with Accumulated Phase of ω2

Similar to |ω⟩ de�ned in the last section, there is

|ω2⟩ = |001⟩+ ω |010⟩+ ω2 |100⟩

which can be veri�ed to satisfy Ĉspin
3 |ω2⟩ = ω2 |ω2⟩

11.4 Examples of States in Each Pseudospin Sector

Pairwise products of the (normalized) triangle states de�ned in the last sec-
tions provide the states in each pseudospin sector.
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τ = 0 includes all products of |000⟩, |111⟩, and |W ⟩. For example, |W ⟩⊗|111⟩
is in the τ = 0 sector. The overall phase is ω0 = 1 under Ĉspin

3 , as required.

τ = 1 includes |000⟩ ⊗ |ω⟩, with overall phase ω1 under Ĉspin
3 , as required.

τ = −1 includes |W ⟩ ⊗ |ω2⟩, with overall phase ω2 under Ĉspin
3 , as required.
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